

SUMMERTIME OVERHEATING IN UK HOMES

Can occupants keep cool without using air-conditioning?

Ben Roberts supervised by Dr. David Allinson and Prof. Kevin J. Lomas

LoLo Annual Colloquium 2018

8 November 2018

PhD Aim

Can window and curtain use reduce summertime overheating?

Synthetic occupancy

- Not real people, but does things people do.
- Controlled
- Repeatable
- Reliable

But...

 Doesn't perfectly replicate the behaviour of real building occupants.

Comparing different occupant behaviours May-September 2017

Comparing window opening

Lower operative temperature with internal doors open when night ventilating

All hours	Sleeping hours
1.3°C	1.7°C

Comparing blind use

A paired t-test showed north-facing bedroom operative temperatures were 0.2-0.4°C lower with **curtains open**.

Ventilation measurements with tracer gas

What can occupants do to reduce overheating indoor temperature?

- 1. Night ventilate.
- 2. Open curtains at night.
- 3. Open bedroom doors.

Industry Continue to develop secure and noise/light-attenuated night ventilation.

Academia New dataset of indoor temperature using CIBSE TM59 occupancy profiles for further analysis.

Policymakers Regulate to enable night ventilation and cross-ventilation in future residential buildings.

Industry Continue to develop secure and noise/light-attenuated night ventilation.

Academia New dataset of indoor temperature using CIBSE TM59 occupancy profiles for further analysis.

Policymakers Regulate to enable night ventilation and cross-ventilation in future residential buildings.

Industry Continue to develop secure and noise/light-attenuated night ventilation.

Academia New dataset of indoor temperature using CIBSE TM59 occupancy profiles for further analysis.

Policymakers Regulate to enable night ventilation and cross-ventilation in future residential buildings.

Thank you for listening

Ben Roberts, PhD Student

b.m.roberts@lboro.ac.uk @BenM_Roberts linkedin.com/in/benrobertsenergy lolo.ac.uk/people/ben-roberts/

Extra information

Lower air change rates with curtains closed

(and windows open)

Paired t-test = **0.25-0.47ac/h difference** curtains open/closed (rear bedroom)

LIFE IN THE GAP: HOW DOES A CONSTRUCTION TEAM RESPOND TO TARGETS FOR ENERGY AND CARBON IN-USE?

Catherine Willan

Supervisors: Paul Ruyssevelt, Michelle Shipworth, Russell Hitchings

LoLo Annual Colloquium 2018 8th November 2018

@LoLoCDT #lolocdt

"If we don't hit our carbon target, we will be fined" (construction manager)

0

- What are the targets?
- Why look at this?
- What people do, say, and share

"I'd like to think that you design a system, and it's the best it could be" (contractor)

So do targets make construction companies more responsible for performance in-use?

Yes...

- Drivers
- Focus
- Links
- Sense of pride

"As much as ...we want to be [a] green contractor, I'm really looking at risk" (engineer)

...and no

- No road map
- Silver bullets
- What is being guaranteed?

Target management not energy management?

"Remember we're a systems integrator. We don't build..." (head office)

What does this mean for construction?

- Practical guidance
- Consistent responsibility
- Coordination points
- Knowledge and information

"There are no standards – it's not like you can go the ISO standard" (engineer)

Reflections for policy

- Policy in practice
- Standards vs variation
- Contracts and incentives
- Market pull

"You know you've achieved what you think you've achieved" (engineer)

Research perspective: what is an energy efficient building?

- Reality ("actual use") is negotiable
- Do targets tell us how well the building did?

Thank you

DEVELOPING A DYNAMIC METHOD TO ASSESS WHOLE HOUSE HEAT LOSS

Frances Hollick

Supervised by Cliff Elwell (1st) Bob Lowe (2nd)

LoLo Annual Colloquium 2018

8 November 2018

@LoLoCDT #lolocdt

Aims:

- A widely applicable method of determining the heat loss coefficient of an occupied house
 - As unintrusive as possible
 - Requiring minimal assumptions

T_{in} R_1 T_{out}

Methods:

- Bayesian analysis of grey box models
- Lumped thermal capacitance models
- Around 6 case study houses, all occupied or with synthetic occupancy

5 unoccupied days in November Semi-detached house

5 synthetically-occupied days in March Semi-detached house

10 synthetically-occupied days in April Detached house

Insights for academia:

- It is possible to dynamically model an occupied house using internal temperature, smart meter-style energy data and basic weather data
 - Different models are required for different buildings and different times of year
- Dynamic models allow shorter testing periods and year-round data collection
- Characterising water heating becomes more important as fabric efficiency improves; more data is needed to explore this

Insights for industry:

- Models of this form could be incorporated into smart in-home devices
- They could also be used for QA, or to facilitate targeted retrofits

Insights for policy:

- The method could provide a tool to investigate a building's compliance
- It could also support the implementation of retrofitting schemes, and the wider benefits of smart-meter roll out

PREDICTION OF INTERNAL TEMPERATURES DURING HOT SUMMER CONDITIONS WITH TIME SERIES FORECASTING MODELS

Presenter: Matej Gustin, Loughborough University

Supervisors: Dr. Rob McLeod and Prof. Kevin Lomas

LoLo Annual Colloquium 2018

8 November 2018

@LoLoCDT #lolocdt

- Heatwave 2003: over 2,000 heat-related deaths in the UK and more than 30,000 across
 Europe [1]
- Such events are predicted to become more frequent, more intense and longer lasting due to climate change [2-3]
- Heatwave 2018: unusual heatwaves and record breaking temperatures in Northern Europe [4]

Summer temperature anomalies, Stott et. al. (2004, Nature): [5]

- Following 2003 heatwave Heat-Health Warning Systems (HHWSs) were adopted in
 16 European countries, warnings based on <u>external air temperature [6-7]</u>
- Individuals situated indoors are 1.7-3.8 times more likely to experience adverse conditions than individuals located outdoors [8]
- People spend most of their time indoors [9]
- People aged over 60 years and individuals
 with chronic diseases at increased risk [10]
- Over-reliance on air conditioning
 is unsustainable and not widely affordable [11]
- Development of local, dwelling-based
 internal thresholds, should be a priority [12]

Project title, aim and objectives of the projects

Project title: PREDICTING OVERHEATING RISK IN UK HOMES

Aim: to develop an empirical forecasting model for the short-term prediction of the indoor temperatures in free-running existing dwellings during hot summer conditions

Objectives:

- Develop model able to operate during extreme events (i.e. heatwaves)
- Automate selection of optimal model structure (i.e. input variables)
- Create model which operates continuously with a rolling forecasting origin
- Evaluating how far in advance the model can forecast with adequate accuracy
- Evaluating stochastic effect of interventions (e.g. window opening)

Results - forecasts during the 2015 heatwave

HHWS (NOW):

Warnings triggered at regional level (based on outdoor air temperatures)

Issues:

- Cannot identify who is actually at risk of overheating
- Dwellings overheat at different rates during hot weather and some might not even overheat

HHWS (in the FUTURE):

Warnings triggered at local level (i.e. for specific rooms)

Advantages:

- Can identify when, where and who is at a higher risk
- Supply tailored information to occupants on mitigation actions
- Targeted deployment of emergency services

1. EMPIRICAL MODELS CAN BE INTEGRATED IN SIMPLE DEVICES (e.g. SMART METERS)

 Models can run locally offering on-the-spot temperature predictions

2. CALCULATIONS PERFORMED AT A CENTRALISED DATA CENTRE

- Readings transferred to data centre via WiFi
- Occupants receive overheating notifications via smartphones, sms/email; calls from emergency services to vulnerable occupants

Relevance to academia-findings

- More complex models ≠ better forecasts
- Identied why and which models more reliable when forecasting out of the usual range (e.g. heatwaves):
 - a) Semi-parametric GAM best for short-term forecasting (≤6h)
 - b) Linear ARX models more reliable for longer forecasts, less sensitive and approximate better when predicting out of usual range
- Logistic GAM models adequately predict window opening if established pattern
- Forecasting indoor temperatures with window opening states doesn't improve accuracy

Journal paper (2018)

Building and Environment 143 (2018) 727–739

Contents lists available at ScienceDirect

Building and Environment

Forecasting indoor temperatures during heatwaves using time series models

Matej Gustin^{a,b,*}, Robert S. McLeod^{a,b}, Kevin J. Lomas^{a,b}

'Best student paper' award at the BSO 2018 conference in Cambridge

Proceedings of BSO 2018:

4th Building Simulation and Optimization Conference, Cambridge, UK: 11-12 September 2018

Prediction of Internal Temperatures During Hot Summer Conditions with Time Series Forecasting Models

Matej Gustin^{1,2,*}, Rob S. McLeod^{1,2}, Kevin J. Lomas^{1,2}

• <u>Journal paper (in development):</u> 'Can semi-parametric models outperform linear models when occupant interventions are incorporated for the prediction of overheating in dwellings?'

^a School of Architecture, Building and Civil Engineering, Loughborough University, LE11 3TU, UK

^b London-Loughborough (LoLo) EPSRC Centre for Doctoral Training in Energy Demand, Loughborough University, LE11 3TU, UK

- [1] De Bono, A. et al., 2004. Impacts of summer 2003 heat wave in Europe. Environment Alert Bulletin UNEP (August), p. 4.
- [2] Meehl, G.A. and Tebaldi, C., 2004. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 305(August), pp. 994–997.
- [3] Jenkins, G.J. et al., 2009. The climate of the UK and recent trends. Met Office Hadley Centre, Exeter, UK.
- [4] World Meteorological Organization, 2018. July sees extreme weather with high impacts
- [5] Stott, P. et. al., 2004. Human contribution to the European heatwave of 2003. doi:10.1038/nature03089.
- [6] World Health Organization , 2009. Improving public health responses to extreme weather/heat-waves: EuroHEAT. WHO Regional Office for Europe , pp. 1–70.
- [7] Public Health England, 2015. Heatwave plan for England: Protecting health and reducing harm from severe heat and heatwaves. London.
- [8] Chan, N.Y. et al., 2001. An empirical mechanistic framework for heat-related illness. Climate Research 16(2), pp. 133–143. doi: 10.3354/cr016133.
- [9] Mavrogianni, A. et al., 2010. London housing and climate change: Impact on comfort and health Preliminary results of a summer overheating study. Open house international journal 35(2), pp. 49–58.
- [10] Kenny, G.P. et al., 2010. Heat stress in older individuals and patients with common chronic diseases. Cmaj 182(10), pp. 1053–1060. doi: 10.1503/cmaj.081050.
- [11] Anderson, M. et al., 2013. Defining indoor heat thresholds for health in the UK. Perspectives in Public Health 133(3), pp. 158–164. doi: 10.1177/1757913912453411.
- [12] Met Office, 2016. 10 day weather forecast Met Office.

