London-**Lo**ughborough Centre for doctoral research in energy demand

SUMMER EVENT 2012

Domestic Thermal Energy Storage: A study of the present and future benefits and impacts.

Joynal Abedin BEng.(Hons), MEng, MRes. 1st Year PhD Student

INTRODUCTION Heating is the major energy consumer and CO₂ emitter in the domestic building sector. One solution is low carbon and renewable energy technologies, and electrification. Wide scale application of these will induce the following problems:

Large peak to off-peak demand variation

Intermittency of supply & low power quality

Disparity between peak heat/electricity demand

Distribution & security issues of large peak/offpeak variation

Thermal energy storage can help address these issues. But, we need to understand how, at what cost and how to maximise the benefits and impacts?

METHODOLOGY

Dynamic building model block diagram.

EXPECTED OUTCOME

Greater understanding of:

- Current/future heating needs
- Time shifting ability of heat demand
- Impact on households & the wider stakeholders
- The best heat storage practices

Supervisor: Dr. S. K. Firth & Prof. P. C. Eames

Bottom-up approach:

- Create heating load profiles
- Dynamic building modelling
- Energy performance simulation
- Sensitivity analysis (Monte-Carlo analysis)
- Validation through practical experiments
- Benefit analysis

- **PROGRESS** Literature review
 - Simple building model
 - Developing load profiles

ESP-r screen shots of building model and simulation results.

Heating plant sensible load: GF (testhouse1.aps)